Minimizing spatial and time reservation with Collision-Aware DCF in mobile ad hoc networks
نویسندگان
چکیده
Carrier sensing is widely adopted in wireless communication to protect data transfers from collisions. For example, distributed coordination function (DCF) in IEEE 802.11 standard renders a node to defer its communication if it senses the medium busy. For the duration of deferment, each frame carries, in its MAC header, a 16-bit number in microseconds during which any overhearing node must defer. However, even if the carrier signal is detected, both ongoing and a new communication can be simultaneously successful depending on their relative positions in the network or equivalently, their mutual interference level. Supporting multiple concurrent communications is important in multihop ad hoc networks in order to maximize the network performance. However, it is largely ignored in DCF of the 802.11 standards because it is primarily targeted at single-hop wireless LANs. In addition, in DCF, the time duration information mentioned above is not delivered to all potential interferers, particularly those in the distance. This paper proposes Collision-Aware DCF (CAD) that efficiently utilizes the available channel resource along with the spatial as well as time dimension. First, each node makes its deferment decision adaptively based on the feedback from the communication counterpart and the status of the medium rather than on a simple, fixed carrier sense threshold as DCF. Second, CAD embeds the spatial and time reservation requirements in the PHY header, which is transmitted at the lowest data rate, so that a larger group of neighbors become aware of the ongoing communication and thus avoid collisions. Extensive experiments based on ns-2 network simulator show that CAD consistently outperforms DCF regardless of node mobility, traffic intensity, and channel randomness. For practicality, this paper discusses the implementation of CAD based on the DCF specification. 2008 Elsevier B.V. All rights reserved.
منابع مشابه
Energy Efficient Routing in Mobile Ad Hoc Networks by Using Honey Bee Mating Optimization
Mobile Ad hoc networks (MANETs) are composed of mobile stations communicating through wireless links, without any fixed backbone support. In these networks, limited power energy supply, and frequent topology changes caused by node mobility, makes their routing a challenging problem. TORA is one of the routing protocols that successfully copes with the nodes’ mobility side effects, but it do...
متن کاملEnergy Efficient Routing in Mobile Ad Hoc Networks by Using Honey Bee Mating Optimization
Mobile Ad hoc networks (MANETs) are composed of mobile stations communicating through wireless links, without any fixed backbone support. In these networks, limited power energy supply, and frequent topology changes caused by node mobility, makes their routing a challenging problem. TORA is one of the routing protocols that successfully copes with the nodes’ mobility side effects, but it do...
متن کاملA Hidden Node Aware Network Allocation Vector Management System for Multi-hop Wireless Ad hoc Networks
Many performance evaluations for IEEE 802.11distributed coordination function (DCF) have been previouslyreported in the literature. Some of them have clearly indicatedthat 802.11 MAC protocol has poor performance in multi-hopwireless ad hoc networks due to exposed and hidden nodeproblems. Although RTS/CTS transmission scheme mitigatesthese phenomena, it has not been successful in thoroughlyomit...
متن کاملIntuitionistic fuzzy logic for adaptive energy efficient routing in mobile ad-hoc networks
In recent years, mobile ad-hoc networks have been used widely due to advances in wireless technology. These networks are formed in any environment that is needed without a fixed infrastructure or centralized management. Mobile ad-hoc networks have some characteristics and advantages such as wireless medium access, multi-hop routing, low cost development, dynamic topology and etc. In these netwo...
متن کاملPerformance Evaluation of a Dynamic Medium Access Control Scheme for Mobile Ad-hoc Networks Using Different Mobility Models
Recently there have been considerable interests focusing on the enhancement of Mobile Ad-hoc NETworks (MANETs), which are a collection of wireless mobile stations forming a selfconfiguring network without using any existing infrastructure. The Distributed Coordination Function (DCF) of IEEE 802.11 Medium Access Control (MAC) protocol has been widely employed to control the shared wireless mediu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Ad Hoc Networks
دوره 7 شماره
صفحات -
تاریخ انتشار 2009